Extended output phasor representation of multi-spectral fluorescence lifetime imaging microscopy.
نویسندگان
چکیده
In this paper, we investigate novel low-dimensional and model-free representations for multi-spectral fluorescence lifetime imaging microscopy (m-FLIM) data. We depart from the classical definition of the phasor in the complex plane to propose the extended output phasor (EOP) and extended phasor (EP) for multi-spectral information. The frequency domain properties of the EOP and EP are analytically studied based on a multiexponential model for the impulse response of the imaged tissue. For practical implementations, the EOP is more appealing since there is no need to perform deconvolution of the instrument response from the measured m-FLIM data, as in the case of EP. Our synthetic and experimental evaluations with m-FLIM datasets of human coronary atherosclerotic plaques show that low frequency indexes have to be employed for a distinctive representation of the EOP and EP, and to reduce noise distortion. The tissue classification of the m-FLIM datasets by EOP and EP also improves with low frequency indexes, and does not present significant differences by using either phasor.
منابع مشابه
The phasor approach to fluorescence lifetime imaging analysis.
Changing the data representation from the classical time delay histogram to the phasor representation provides a global view of the fluorescence decay at each pixel of an image. In the phasor representation we can easily recognize the presence of different molecular species in a pixel or the occurrence of fluorescence resonance energy transfer. The analysis of the fluorescence lifetime imaging ...
متن کاملBiosensor Förster resonance energy transfer detection by the phasor approach to fluorescence lifetime imaging microscopy.
We present here the phasor approach to biosensor Förster resonance energy transfer (FRET) detection by fluorescence lifetime imaging microscopy (FLIM) and show that this method of data representation is robust towards biosensor design as well as the fluorescence artifacts inherent to the cellular environment. We demonstrate this property on a series of dual and single chain biosensors, which re...
متن کاملA practical implementation of multi-frequency widefield frequency-domain FLIM
Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime, especially in kinetic studies in biomedical researches. However, the small range of modulation frequencies available in commercial instruments makes this technique limited in its applications. Here we describe a practical implementation of multi-frequ...
متن کاملA fluorescence lifetime extraction algorithm based on multiple signal classification
The multiple signal classification algorithm has been widely used in array signal processing for direction-of-arrival estimations. In this paper, we applied this algorithm to estimate fluorescence lifetimes for fluorescence lifetime imaging microscopy (FLIM) for the first time to our knowledge. Monte Carlo simulations were carried out to test its performances in comparison with the previously r...
متن کاملPhasor-Based Endogenous NAD(P)H Fluorescence Lifetime Imaging Unravels Specific Enzymatic Activity of Neutrophil Granulocytes Preceding NETosis.
Time-correlated single-photon counting combined with multi-photon laser scanning microscopy has proven to be a versatile tool to perform fluorescence lifetime imaging in biological samples and, thus, shed light on cellular functions, both in vitro and in vivo. Here, by means of phasor-analyzed endogenous NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) fluorescence lifetime imaging, we v...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedical optics express
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2015